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Abstract

Acceleration data for activity recognition typically are collected on battery-
powered devices, leading to a trade-o↵ between high-accuracy recognition
and energy-e�cient operation. We investigate this trade-o↵ from a feature
selection perspective, and propose an energy-e�cient activity recognition
framework with two key components: a detailed energy consumption model
and a number of feature selection algorithms. We evaluate the model and
the algorithms using Random Forest classifiers to quantify the recognition
accuracy, and find that the multi-objective Particle Swarm Optimization al-
gorithm achieves the best results for the task. The results show that by
selecting appropriate groups of features, energy consumption for computa-
tion and data transmission is reduced by an order of magnitude compared
with the raw-data approach, and that the framework presents a flexible se-
lection of feature groups that allow the designer to choose an appropriate
accuracy-energy trade-o↵ for a specific target application.
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1. Introduction1

Internet of Things (IoT) networks and applications have gained tremen-2

dous popularity in the recent years [1, 2]. This includes applications of wear-3

able devices [3].4
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Figure 1: Overview of the proposed system.

Acceleration data from wearable devices are widely used for human activ-5

ity recognition applications in healthcare [4, 5], fitness [6], long-term behavior6

monitoring [7] and other areas. Their typical application uses a multistage7

process: after segmenting and filtering the raw sensor data, a number of sta-8

tistical features are computed and then used as inputs for a machine learning9

classifier. Wearable devices are battery powered; they have limited energy10

budgets, and the balance between high accuracy and energy-e�cient opera-11

tion is important.12

Wearable-based behavior monitoring studies often require a prolonged13

collection of data. Many commercial wearables require frequent recharging,14

but activity recognition systems for clinical or research purposes may not15

have the luxury of users that conform to a strict and cumbersome device-16

charging schedule. For elderly or ill people, the requirement to frequently17

recharge their devices may even be unethical. It is natural for designers of18

human activity recognition systems to ask these key questions:19

• Given a specific target activity recognition accuracy, for what maximum20

time wearables can be deployed before they need to be recharged?21

• Given a specific target deployment time, what is the maximum accuracy22

obtainable without recharging wearables during the deployment?23

Contributions. This paper proposes a system (Fig. 1) that helps to be24

answer these questions. It is a framework for finding groups of features that25

have approximately optimal energy-accuracy trade-o↵s for a specific target26

application (i.e., classification of human activities of daily living) on a specific27

target platform. The framework consists of an energy model that describes28

the energy costs of feature extractions and transmissions together with a29

feature selection algorithm that optimizes both for accuracy and energy ef-30

ficiency. It uses training data collected from a previous study or from pilot31

experiments, a set of candidate platform, and a hardware platform model as32
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inputs, and produces the approximate Pareto-optimal front of non-dominated33

feature groups as the output. Our specific contributions are:34

• We present a novel feature energy model that accounts for inter-depen-35

dencies between features to better estimate the energy consumption in36

the feature extraction process.37

• We evaluate a number of feature group selection algorithms for the38

application domain.39

• We present evidence about the suitability of the Particle Swarm Op-40

timization (PSO) algorithm, which we implement it in two di↵erent41

versions: as a multi-objective and as a single-objective optimization42

problem.43

Prototype system and results. This paper assumes a setup where44

the sampling, preprocessing and feature extraction are done on the device,45

and the resulting features are wirelessly transmitted to a central system. We46

implement a C library for on-board feature extraction, run it on an ARM47

Cortex-M3 device, and measure the feature extraction time to estimate en-48

ergy consumption. The energy consumption model as well as three di↵erent49

datasets are used as inputs to the feature group selection algorithms.The50

evaluation scores the results in two dimensions: first, charge consumption51

for feature computation and transmission; second, the F1 score for activity52

recognition. It compares the Pareto-optimal fronts selected by the PSO al-53

gorithms with those selected by methods from our previous work [8]: greedy54

search and mutual information (MI) based search. We evaluate the proposed55

system for classification of human activities of daily living with a Random56

Forest classifier, and compare the accuracy of the PSO algorithms with our57

previous work [8]. The PSO algorithms produce results that are closer to58

optimum than the alternatives, and the multi-objective PSO also finds the59

highest number of points on the front. The feature selection is assumed to60

be done o✏ine, before the deployment of the data collection and feature ex-61

traction code, so that after running the feature group selection algoriths the62

desired features can be directly encoded in the deployed software.63

Compared with our previous work [8] the present research adds selection64

of feature groups instead of merely evaluating individual features. We extend65

the feature extraction code from [8] with feature groups, several new features,66

and generic transforms and filters. Furthermore, we add the complete energy67

model, and describe how the system can be used to construct a practical68

feature extraction framework.69
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Summary of the paper. The paper first surveys the related work (Sec-70

tion 2). Subsequently it presents the energy model (Section 3) and the feature71

group selection algorithms (Section 4). The evaluation of the framework is72

given in Section 5, and application examples in Section 6. Finally, the paper73

ends with conclusions (Section 7).74

Nomenclature75

F1 Precision and recall based measure of a test’s accuracy76

BLE Bluetooth Low Energy77

CBOR Concise Binary Object Representation78

HAR Human Activity Recognition79

IoT Internet of Things80

MI Mutual Information81

PAMAP Physical Activity Monitoring for Aging People82

PSO Particle Swarm Optimization83

RF Random Forest84

SMA Signal Magnitude Area85

SPHERE Sensor Platform for Healthcare in a Residential Environment86

SPW-2 SPHERE Wearable 287

UCI University California Irvine88

2. Related Work89

Activity Recognition. Accelerometer is a core sensor for human activ-90

ity recognition [9, 10]. Even though the recognition accuracy can be improved91

by using multiple accelerometers at di↵erent locations on the body, good re-92

sults for coarse-grained activities can be obtained just from a single, typically93

wrist-worn device [11] – a setup that we assume in this paper.94
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Activity detection using deep learning can achieve state-of-the-art accu-95

racy [12]. However, deep learning is not suitable for the ultra-low energy96

consumption Class-1 IoT devices [13] our system targets; instead, it typi-97

cally targets smartphone-class devices [14] and beyond. The work by Lane et98

al. on deep learning for ARM Cortex-M is one exception from this trend;99

however, they admit that “work remains to make deep models of this scale100

completely practical” as they cannot be executed in real time [15].101

Energy E�ciency in Activity Recognition. Energy e�ciency has102

been a major research goal for the community, as well as a driver for Edge103

Computing – the trend where computation moves away from the cloud and104

closer to the data-producing devices [16]. Our work is an instance of the105

Edge Computing paradigm.106

In most of the related work, the accuracy-energy trade-o↵ is not explicitly107

defined; rather, the strategy is to achieve subjectively “good-enough” accu-108

racy while optimizing the energy usage [17, 18, 19]. As a result the minimal109

accuracy threshold is hidden in the details in the proposed systems. By be-110

ing explicit and not forcing a single threshold value, our work achieves better111

transparency and flexibility.112

Yan et al. [17] propose to optimize sampling rate and classification fea-113

tures on mobile phones separately for each activity, in a real-time, adaptive114

fashion. The system proposed in our paper can be applied to select the fea-115

tures for a single, specific activity or a subgroup of activities, serving as a116

building block in their approach.117

Another approach is to decide which sensors can be turned o↵ without118

losing a lot accuracy. Gordon et al. [18] optimize sensor usage based on119

prediction of future activities. Similarly, in case of multiple sensor devices,120

some of them can be delegated to “backup” status, thus saving the energy121

spent by the whole system [20]. Again, these approaches can complement122

the feature-selection system of this paper. Trivially, a sensor can be turned123

o↵ if no features use the data produced by this sensor; the energy saved by124

that would be be captured by the platform’s energy model.125

Hierarchical activity recognition is another natural extension. For exam-126

ple, Liang et al. [19] propose a hierarchical recognition algorithm that only127

computes the more expensive frequency domain features when the activity128

cannot be reliably classified by time domain features. Zheng et al. [21] show129

that a hierarchical classifier allows to reduce the sampling frequency several130

times while maintaining “high accuracacy”. Hierarchical classifiers are be-131

yond the scope of the present paper, however, we aim to generalize the results132
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for this in our future work.133

Feature Extraction. In terms of feature extraction on low-power em-134

bedded devices, we build on our previous work [8]. We extend the work by135

adding the notion of generalized transforms in the feature extraction stage.136

We also add a number of new features, and drop those features that showed137

bad energy-accuracy trade-o↵ in our previous work.138

Feature Selection. We build on the extensive existing work in feature139

selection [22] and experiment with both wrapper and filter methods [23].140

The particle swarm optimization method [24] has been previously proposed141

for feature selection [25]. That includes the multi-objective optimization142

that relies on nondominated sorting [26]. However, the energy costs of the143

recognition are typically not quantified in detail; frequently, existing works144

use the number of features as a proxy for cost (i.e., energy consumption);145

see [27, 28] for examples. In this paper, we provide a detailed energy model146

for computing the cost of feature groups.147

Accuracy-Energy Trade-O↵s. One typical way to investigate the148

trade-o↵ for the target application is to compare o↵-node and on-node ac-149

tivity recognition schemes [29]. Our work falls in between these two extreme150

approaches: while the recognition is done o↵-node, the software one the node151

is optimized in an application-specific way to extract only the features that152

are required by the application.153

Chu et al. propose a system for multi-objective optimization of mobile154

sensor classifiers [30]; while the Pareto-optimal o✏ine optimization approach155

is the same as used in our paper, we operate at the level of feature groups,156

rather than classifiers. Similarly, Jensen et al. propose a method for ap-157

proaching the accuracy-cost conflict by choosing an appropriate classifier [31];158

however, they ignore the feature selection step, as well as abstract away from159

the target hardware instead of using an empirical energy model.160

3. Energy Model161

3.1. Features, Transforms, and Filters162

Let us denote the vector of the raw samples with s = (s1, s2, . . . , sn),163

where si 2 R. Normally, acceleration data is three dimensional, i.e., there are164

three vectors sx = (x1, x2, . . . , xn), sy = (y1, y2, . . . , yn), sz = (z1, z2, . . . , zn)165

corresponding to acceleration in the three spatial dimensions.166

In a preprocessing stage, the data is segmented in windows. Assuming167

window size w and processing interval k, the j-th window of the input data168
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is the vector W (s)j = (sj·k, sj·k+1, . . . , sj·k+w�1). If k < w, the neighboring169

windows overlap each another.170

Features, transforms and filters are functions that act on the raw data,171

either on a single dimension separately or the vector of the three spatial172

dimensions. The di↵erence between a them is that a feature f is calculated173

once per window (f : Rw ! R or f : R3w ! R), while a transform or a filter174

t creates an output value for every input value (t : R ! R or t : R3 ! R).175

The di↵erence between the transform and a filter is that a transform does176

not lose information and is reversible. For simplicity, in some occasions in177

this paper we use the term “transform” to denote any function that conforms178

to the output value criteria above.179

3.2. Feature Preselection180

The list of candidate features is given in Table 1. We also introduce a181

number of transforms and filters (Table 2) that preprocess the data before the182

feature extraction. For example, transforming the data with the magnitude183

squared function makes it more robust to rotations of the wearable compared184

with computing features of each axis separately. (Note that the list does not185

include the magnitude filter. It was deemed too expensive, since it requires186

to compute a square root operation for each (xi, yi, zi) sample.) All data is187

first passed to a median-of-three filter to de-noise it. This filter is assumed to188

be always enabled, and as such not handled by the group selection process.189
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Table 1: Features.

Feature Definition

Mean µs =
1
w

wP
i=1

si

Minimum min(s)

Maximum max(s)

First Quartile sorted(s)w/4

Median sorted(s)w/2

Third Quartile sorted(s)3w/4

Inter-quartile range sorted(s)3w/4 � sorted(s)w/4

Energy Es =
1
w

wP
i=1

(si)2

Standard Deviation
p
Es � (µs)2

Correlation C(su, sv) =
Pw

i=1(ui�µu)(vi�µv)pPw
i=1(ui�µu)2

Pw
i=1(vi�µv)2

Entropy �
wP
i=1

P (si) logP (si)

Table 2: Transforms and filters.

Transform/Filter Definition

Median-of-three median(si�1, si, si+1)

Jerk si � si�1

L1 norm abs(xi) + abs(yi) + abs(zi)

Magnitude squared x2i + y2i + z2i

The results in [8] show that for recognition of a limited set of coarse-190

grained activities of daily living (such as walking, standing, sitting, and ly-191

ing) simple time-domain features have the best energy-accuracy trade-o↵s.192

Inspired by those results, we only use time-domain features for this paper,193

eschewing the need to run the Fourier transform or other similar transforms194

on the device to obtain frequency-domain features. To make it clear, this195

8



Processing
     loopfor

Select n-th
element Entropy

Median

Inter-quartile
range

1st
quartile

3rd
quartile

MinMaxSum (Sum)2

EnergySt. dev.Mean

Correlation

Raw or transformed data

Figure 2: Features under consideration and their inter-dependencies. Labeled in italic:
intermediate results that are included in the energy model, but not in the feature group
selection stage.
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Figure 3: Transforms and filters applied to the raw data.

pre-selection is done because of pragmatic reasons; the approach described196

further in this paper is not limited to the specific functions we are using.197

Floating-point arithmetic is used to compute the standard deviation, cor-198

relation between axis, energy and entropy. The remaining features, including199

the mean, use only fixed-point arithmetic.200

We note that the final list of features includes time domain features typi-201

cally used in published research in this field, even if occasionally under di↵er-202

ent names. For example, the “ feature” defined and used by Wang et al. [29]203

is included implicitly: as mean computed on the jerk -transformed data in204

its normalized version. The Signal Magnitude Area (SMA) feature [9] is also205

included implicitly, as the mean computed on the L1 norm.206

In further analysis, we assume that all features are computed on all three207
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axis (x, y, z) of acceleration data, where applicable. The inter-axis correla-208

tion feature is computed for all three pairs of axis (xy, xy and yz).209

3.3. Energy Costs210

Let us define the cost of f, where f is a function that is either a feature211

or a transform, as the energy needed to iteratively compute the function on212

a single window W of samples (W 2 R3w or W 2 Rw).213

Features and transforms can be combined; for example, one can first214

transform the data using the jerk transform, then transform the result using215

the magnitude squared transform, then segment the data and calculate the216

standard deviation of each segment. More generally, the combinations of217

any two di↵erent transforms ti and tj yields two new transforms ti(tj(s)) and218

tj(ti(s)) in our model. Similarly, any transform t can be combined with any219

feature f to yield a new feature f(t(s)).220

Multiple features cannot be combined in this general way; however, one221

can notice that there are directional dependencies between some of the fea-222

tures. For example, to calculate the standard deviation, one must calculate223

the mean. Therefore if both the standard deviation and the mean are in-224

cluded in a group of features, then their total calculation cost is equal to225

the calculation cost of the standard deviation, not the sum of the costs of226

these two individual features. In Section 3.4 we describe such an optimized227

implementation, and use it further in the paper.228

More generally, if f1 and f2 are features that both use an intermediate229

result g, where g is either a feature or a transform, then the cumulative cost230

of the feature set {f1, f2} is:231

cost({f1, f2}) = cost(f1) + cost(f2)� cost(g) (1)

In the special case when the intermediate result g is equal to one of the232

features f1 or f2:233

cost({f1, f2}) = max(cost(f1), cost(f2)) (2)

Let us generalize Eq. 1. First, let us assume that the energy cost of a set234

{f1, . . . , fm} of features and transform is already known and equal to cm, and235

that the task is to add a new feature fm+1 to this set that uses some inter-236

mediate result g that is already computed. Then the cost of the combined237

set is:238

cm+1 = cost({f1, . . . , fm+1}) = cm + cost(fm+1)� cost(g). (3)
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This approach is used to iteratively compute the cost of a set of features239

using their individual costs (Section 3.5) for the target hardware platform240

(Section 3.4) using the dependencies shown in Figs. 2 and 3.241

3.4. Example Hardware Platform242

3.4.1. Platform Description243

We evaluate the cost of the on-board feature extraction on SPW-2 [32]244

(Fig. 4), an embedded hardware platform based on ARM 32-bit Cortex-245

M3 core. Its limited RAM and program memory size (20 kB and 128 kB,246

respectively) and CPU speed (48MHz) do not allow to run high-complexity247

algorithms. However, the System-on-Chip has a 2.4 GHz ultra-low power248

wireless radio for data transmission.249

Figure 4: SPW-2: ARM Cortex-M3 based wearable accelerometer platform [32].

3.4.2. Computation250

We implement the feature extraction as a stand-alone library1. The li-251

brary is written in C programming language; the code is fully compatible252

with the C99 language standard and portable, as it does not contain any253

ARM Cortex specific functionality. To approximate the energy cost of com-254

puting each feature, we experimentally evaluate it on the SPW-2. To achieve255

that, the library is linked with the Contiki-NG operating system2.256

The evaluation of the library consists of performance measurements of257

15 000 samples of real 3-axial acceleration data samples, taken from the258

SPHERE Challenge dataset. For each function, we measure the time it259

takes to segment the samples in 128-sample windows with 50% overlap and260

compute that feature for each window. This window size and overlap has261

been shown to give good results in previous research [9, 10].262

1Available at https://github.com/atiselsts/feature-group-selection
2http://contiki-ng.org/
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The evaluation results consist of timing measurements that capture the263

time required to compute each feature. The features are computed on data264

that is scaled to the range of 8-bit signed integer. As the active-mode current265

consumption of the SPW-2 platform [32] is constant, the time taken for the266

computation accurately corresponds to the charge consumption of the micro-267

controller. We use the electric charge as the main metric, rather than energy268

(charge times voltage). The CC2650 System-on-Chip has high dynamic range269

of voltage (from 1.8 to 3.8V); the exact number is a platform-specific value270

not relevant to the optimization goals of this paper.271

The C library contains both the implementation of individual features and272

the implementation of feature groups, such as the group {mean, standard273

deviation}. The latter is implemented separately, as a group. It is more274

e�cient that way since these features are interdependent. Specifically, both275

features require the computation of the sum of samples in each window. The276

inter-dependencies from Fig. 2 are used to decide which feature groups to277

implement in this combined way.278

Note that each feature requires to process the data in a for loop. We279

assume that in an optimized implementation to extract a specific group of280

N features, there would be just one for loop. To accurately evaluate the281

cumulative charge consumption of this group from our experimental data,282

we need to sum their individual costs and then subtract the cost of the283

empty for loop multiplied by N � 1 (see Eq. 3).284

3.4.3. Data Transmission285

The CC2650 System-on-Chip supports two radio modes: BLE (Bluetooth286

Low Energy) and IEEE 802.15.4. As a result, we select IEEE 802.15.4 for287

our transmission model.288

We use a model that assumes a 50% overhead. That is, the model assumes289

that in order to transmit one byte of application-layer payload, two bytes290

need to be transmitted in total. This accounts for packet header overhead,291

for ACKs, and for occasional retransmissions of complete packets.292

To calculate the amount of the application data to transmit, the results293

of the feature extraction algorithm are encoded in an e�cient way. For294

integers, CBOR [33] encoding is used, while for floating point numbers: their295

size reduced to 16 bits. Finally, to estimate the charge consumption, we296

measured the transmission-mode current of the target platform. When the297

transmission output power is set to 5 dBm, it is approximately 12.0mA.298
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Table 3: Charge consumption for feature extraction on the SPW-2 wearable platform.

Feature / transform / filter Cost CPU time Avg. current

(per 128 sample window) (at 50Hz)

Mean 0.026µC 6.8µs 0.067µA
Minimum 0.026µC 6.8µs 0.067µA
Maximum 0.026µC 6.8µs 0.067µA

First quartile 0.064µC 16.8µs 0.165µA
Median 0.064µC 16.8µs 0.165µA

Third quartile 0.064µC 16.8µs 0.165µA
Inter-quartile range 0.070µC 18.2µs 0.179µA

Energy 0.032µC 8.4µs 0.083µA
Standard deviation 0.035µC 9.2µs 0.090µA

Correlation 0.067µC 17.3µs 0.170µA
Entropy 0.257µC 66.9µs 0.659µA

Median-of-three 0.033µC 8.6µs 0.085µA
L1 norm 0.034µC 8.9µs 0.088µA

Magnitude squared 0.029µC 7.6µs 0.075µA
Jerk + L1 norm 0.047µC 12.2µs 0.120µA

Jerk + Magnitude sq. 0.048µC 12.5µs 0.123µA

Empty for loop 0.010µC 3.2µs 0.032µA

Table 4: Charge consumption for transmission on the SPW-2 wearable platform.

Feature Cost per window Avg. current

(128 samples) (at 50Hz)

Mean 0.89µC 2.29µA
Minimum 1.02µC 2.60µA
Maximum 1.17µC 3.00µA

First quartile 1.02µC 2.60µA
Median 1.02µC 2.60µA

Third quartile 1.02µC 2.60µA
Inter-quartile range 0.84µC 2.16µA

Energy 1.49µC 3.81µA
Standard deviation 1.49µC 3.81µA

Correlation 1.49µC 3.81µA
Entropy 1.49µC 3.81µA

Raw data 31.46µC 80.54µA
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Figure 5: Extraction time for features and transforms.

3.5. Model Instantiation for the Example Hardware Platform299

Table 3 and Table 4 show the instantiation of the charge consumption300

model. The Fig. 5 graphically displays the feature extraction time from the301

Table 3. The charge consumption costs are given for a single axis of accel-302

eration data. In general, it is more than an order of magnitude cheaper to303

compute a feature than to transmit the result of the computation. The only304

exception is the entropy feature. Transmission of the raw data unsurpris-305

ingly is another order of magnitude more expensive, since it means sending306

64 measurements per each window instead of sending just one value.307

4. Feature Group Selection Methodology308

4.1. Preliminaries309

In contrast to single-objective optimization that optimizes over scalars,310

multi-objective optimizes over vector-valued functions. These optimization311

problems take the following general form:312

min (f1(x), f2(x), . . . , fk(x))

s.t. x 2 X ,

in which the k functions to be optimized are denoted as fi (with 1  i  k),313

and X is the feasible set of solutions.314
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A key concept within multi-objective domain is that of dominant solu-315

tions. A solution x1 2 X is said to dominate another solution x2 2 X if:316

1. fi(x1)  fi(x2) 8 i (1  i  k); and317

2. fi(x1) < fi(x2) at least once.318

This important property means that x1 is never worse than x2. If a solu-319

tion x⇤ 2 X dominates the set X\{x⇤}, then x⇤ is said to be Pareto optimal.320

Pareto optimality is noteworthy since the performance of any single objec-321

tive at a Pareto optimal solution cannot be improved without compromising322

performance on the other objectives.323

The set of Pareto optimal solutions is called the Pareto front and it es-324

tablishes the relationship between a set of Pareto optimal solutions and a set325

of operating contexts. In this work, the power budget for feature representa-326

tion calculation defines the operating context. In other words, with access to327

the Pareto front, feature representations can be adjusted depending on the328

power budget. Typically, the front will be calculated o✏ine and deployed to329

the embedded device. The computational expense required to calculate the330

Pareto front is the primary reason for this, however, the resulting model is331

trivial to evaluate on embedded devices.332

4.2. The Multi-Objective Optimization Problem333

The optimization problem in the context of this work is defined as:

minimize (�a(f), e(f)) (4)

subject to ||f || > 0, (5)

where f is a set of feature vectors, a(f) is the classification accuracy given f,334

and e(f) is the energy cost to compute and transmit f . The solution of this335

optimization problem is the Pareto front of k non-dominated sets of feature336

vectors f (1),f (2), . . . ,f (k). The granularity of the solution is the number k.337

Within this work, we are concerned with two objectives (i.e. k = 2): high338

predictive accuracy, and low power consumption for data representation.339

Taking into account all features and their combinations with the di↵erent340

transforms (Section 3), there are 54 total feature vectors under considera-341

tion. Since the number of subsets in a 54-element set is very large, it is not342

possible to apply a brute force algorithm to find the nondominated subsets343

of feature vectors. If more features such as frequency domain features are344
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added, the need to reduce the computational complexity of the search be-345

comes even stronger. Note that some of the features are three-dimensional346

vectors, e.g., mean, when computed on a segment of the raw data, results in347

the triple (meanx, meany, meanz). If these were separated along the three348

axis, that would improve the granularity of the results, but also massively349

increase the number of the features and thus the search space.350

4.3. Activity Recognition Classifier351

We use the Random Forest classifier to evaluate the accuracy. The general352

approach described in this paper is not specific to any particular classifier;353

we selected the Random Forest because it is computationally inexpensive354

and robust, and has shown good results in a wide range of applications.355

Furthermore, the features do not need to be normalized when the Random356

Forest is used; this reduces the computation required for feature extraction.357

The classifier is implemented using the scikit-learn library. The number358

of trees is set to 100 (the default for version 0.22), and the class weight359

parameter set to “balanced” to handle skewed class distributions.360

4.4. Selection Algorithms361

Feature selection methods are categorized in wrapper, filter, and embed-362

ded methods [23]. The first treats the problem as a black box, the second uses363

a pre-processing step independent of the classifier, and the third uses infor-364

mation specific to the classifier. We compare a number of wrapper methods:365

greedy search and PSO based search, as well as one filter method: mutual366

information based selection. In terms of embedded methods, the feature im-367

portances in the Random Forest is a potential candidate. However, the splits368

in the decision tree construction process are selected in a way that maximizes369

information gain. Therefore, the results of selecting by feature importances370

are going to be the same as when selecting by MI.371

4.4.1. Greedy Search372

The idea of the greedy search is to start with an empty set of selected373

features, and then add a single highest-scoring feature in each step. The374

performance of a candidate group of features f is measured by training a375

Random Forest classifier on the training data and evaluating its accuracy on376

the validation data. The measurement score S linearly combines the F1 score377

of this evaluation with the energy consumption E of the group f :378

S = WEE +WAF1, (6)
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The weights WA and WE are selected to scale the accuracy and energy379

metrics to similar amplitude and the same direction: WA = �500WE. En-380

ergy is a large number that needs to be minimized, and F1 score needs to be381

maximized, subject to 0.0  F1  1.0. Once a feature is selected, it is never382

removed from the set. See the Algorithm 1 for the details.383

Algorithm 1 Greedy Search
. Initialization

max cost energy cost({raw data})
selected features ?
score = �1
pareto front = list()
while true do . Main loop

best candidate score = �1
for f 2 candidate features do

if f /2 selected features then

candidate selection = selected features [ {f}
new score evaluate energy and f1score(candidate selection)
if new score > best candidate score then

best candidate score new score
best candidate f

end if

end if

end for

selected features selected features [ {best candidate}
if energy cost(selected features) � max cost then

break
end if

improvement best candidate score� score
score best candidate score
pareto front.append(selected features)

end while

return pareto front

4.4.2. Mutual Information Based Selection384

Mutual information (MI) is a statistical measure between two random385

variables X and Y that quantifies the reduction in uncertainty about one386

random variable given knowledge of another. High MI indicates a large387

reduction in uncertainty. Hence, MI measures the reduction in uncertainty388

about the classification target Y given a feature X. More formally, given389
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Algorithm 2 Mutual Information Based Selection
. Initialization

max cost energy cost({raw data})
selected features ?
score = �1
pareto front = list()
MI list = list()
while true do . Main loop

for f 2 candidate features do

MI list sort(calculate MI(f, classes))
end for

for f 2MI list do
selected features = selected features [ {f}
new score evaluate energy and f1score(selected features)

end for

if energy cost(selected features) � max cost then
break

end if

pareto front.append(selected features)
end while

return pareto front

discrete random variables X and Y , the MI between them is:390

I(X;Y ) =
X

y2Y

X

x2X

p(x, y) log

✓
p(x, y)

p(x) p(y)

◆
(7)

where p(x, y) is the joint probability distribution function of X and Y , and391

p(x) and p(y) the marginal probability distribution functions of X and Y .392

In the MI based selection, all features are initially ranked according to393

their MI with the classification target classes. Then, the highest ranking394

features are one-by-one added to the candidate set, until a predetermined395

number of features have been chosen (Algorithm 2). This is a filter based396

method; in contrast to the greedy search, it does not use information from397

classification results to guide the search.398

4.4.3. Particle Swarm Optimization Based Search399

The Particle Swarm Optimization (PSO) is a global stochastic optimiza-400

tion method. It uses a population of candidate solutions (particles). The401

position of a particle is defined as the n-dimensional vector describing the par-402

ticles coordinates in the search space. The velocity is another n-dimensional403
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vector describing the rate of change of the position. The PSO algorithm404

is iterative; in each iteration it updates the particles according to simple405

mathematical rules based on the particles’ positions and velocities.406

The PSO algorithm is a popular meta-heuristic method for solving non-407

linear optimization problems, including feature selection [25]. It is suitable408

for searching in a very large space of candidate solutions, and does not re-409

quire the optimization function to be di↵erentiable. However, as with other410

stochastic optimization methods, PSO is not guaranteed to find the global411

optima. It may also take a long time to converge.412

For the purposes of this paper, we define the search space as the power413

set of the candidate features. Elements of the particle’s position vector can414

take values from 0.0 to 1.0. If the value of an position element xi is greater415

than the THRESHOLD constant, the i-th feature is defined as selected by the416

particle;THRESHOLD = 0.9 in our implementation to bias the search towards417

sparser selections.418

Table 5: PSO algorithm parameters (from [25]).

Parameter Value

Maximum Iterations 100
Number of Particles 10 000

Inertia Weight 0.7298
Max Speed 0.6

Acceleration c1 1.49618
Acceleration c2 1.49618

We implement two versions of the PSO search:419

• Single objective. Here the score S of a particle is a scalar, calculated420

as in the Eq. 6. The traditional PSO algorithm is used [34].421

• Multi-objective. Here the score of a particle is 2-dimensional vector422

that includes the energy and F1 score values as its elements. As tra-423

ditional PSO method cannot handle multi-objective optimization, we424

utilize the NSPSOFS algorithm by Xue et al. [25]. This algorithm relies425

on nondominated sorting [26] to produce the Pareto-optimal fronts in426

each iteration, and attempts to move the rest of the particles towards427

this front. In each iteration it also prunes the Pareto-optimal fronts by428
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sorting its particles by crowding (distance to neighbors) and removing429

25% of the most overcrowded particles.430

Algorithm 3 shows the details how the PSO methods are incorporated in431

the feature group selection process. Table 5 lists configuration parameters of432

the PSO algorithm; the weight, speed and acceleration parameters are taken433

from Xue et al. [25]. For a detailed explanation of the PSO algorithms, in434

particular the multi-objective version, we ask the reader to consult [25].435

Algorithm 3 PSO Based Search
. Configuration constants

NUM PARTICLES  10 000
. Initialization

particles ?
for f1 2 candidate features do

for f2 2 candidate features do

if f1 6= f2 then

p Particle()
p.features list(f1, f2)
particles particles [ {p}

end if

end for

end for

while length(particles) < NUM PARTICLES do

p Particle()
p.features random subset(candidate features)
particles particles [ {p}

end while

for p 2 particles do

p.score evaluate energy and f1score(p.features)
end for

. Optimization
run particle swarm optimization(particles)

. Result selection
for p 2 particles do

p.score evaluate energy and f1score(p.features)
end for

sorted particle sets nondominated sort(particles)
pareto front list(particle.features for particle 2 sorted particle sets[0])
return pareto front
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4.5. Datasets436

Table 6: Datasets used.

PAMAP2 HAR SPHERE
Dataset Dataset Challenge Dataset

Sampling rate 100Hz 50Hz 20Hz
Number of activities 12 6 3
Number of windows 15 140 10 299 1160

Duration 5.4 h 7.3 h 2.1 h
Wearable position used wrist waist wrist

The PAMAP2 Dataset [35] contains data of multiple physical activities437

performed by 9 subjects wearing 3 inertial measurement units (over the wrist438

on the dominant arm, on the chest, and on the dominant side’s ankle) and439

a heart rate monitor. In this paper, we use the data of their 12 “protocol”440

activities: lying, sitting, standing, ironing, vacuum cleaning, ascending stairs,441

descending stairs, walking, Nordic walking, running, and rope jumping. Data442

were sampled at 100Hz in this work and we use only the accelerometer data,443

although magnetometer and gyroscope data are also available.444

The UCI HAR Dataset [36] was collected by attaching a smart-phone445

(with accelerometer and gyroscope) in a waist-mounted holder, with 30 par-446

ticipants conducting 6 activities in a controlled laboratory environment. Six447

activities were annotated in this dataset: walking, walking up stairs, walking448

down stairs, sitting, standing, and lying down. The acceleration was sam-449

pled at 50Hz on triaxial accelerometers and gyroscopes. Since gyroscopes450

can consume several orders of magnitude more power than accelerometers,451

we only assess the accelerometer data in our treatment of this work.452

The SPHERE Challenge Dataset [37] contains synchronized accelerome-453

ter, environmental and video data that was recorded in a smart home by the454

SPHERE project [38, 7, 39]. Three sensing modalities were collected in this455

dataset: 1) environmental sensor data; 2) accelerometer and Received Signal456

Strength Indication data; and 3) video and depth data. Accompanying these457

data are annotations on location within the smart home, as well as anno-458

tations relating to the Activities of Daily Living that were being performed459

at the time. In this work we consider only the acceleration data. Twenty460

activities were annotated in this dataset, and 10 participants participated461
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volunteered for the challenge totaling approximately 9 hours of data. In or-462

der to avoid having to deal with missing data in this paper, we use a subset463

of the dataset: the activities of six participants, each of which has < 5% of464

samples missing because of lost over-the-air packets, and quantize the read-465

ings as 8-bit integers. Only three activities from this subset have su�cient466

amounts of data (>100 windows each), so we only use those three.467

4.6. Feature Group Selection Algorithm468

The feature group selection is done for each dataset independently using469

this process:470

1. The raw data in the dataset is preprocessed: segmented in 128-sample471

windows (50% overlap).472

2. To each of the segments, one activity value is assigned. If at least 2/3473

of entries in that segment have a single activity the value is set to the474

dominant activity code during that segment; it is set to �1 otherwise.475

3. All features are calculated for each window.476

4. The features of a randomly selected subject are removed from the dataset.477

5. Each feature selection algorithm is run using the features from the main478

dataset as inputs and F1 scores from three-fold cross validation as the479

performance metric.480

6. The performance on the subject-left-out is separately measured for each481

feature group. It is reported to show the generalizability of the results.482

5. Results483

The results (Figs. 6, 7, 8) show the expected shape of the approximate484

Pareto-optimal fronts. When the charge consumption is very low, increasing485

it just slightly leads to massive accuracy gains. Then the curve has an in-486

flection point, and the opposite becomes true: there is just a slight increase487

in accuracy when new or more costly features are added.488
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(a) Main dataset (b) Subject left out

Figure 6: Approximate Pareto-optimal fronts on the PAMAP2 dataset.

(a) Main dataset (b) Subject left out

Figure 7: Approximate Pareto-optimal fronts on the HAR dataset.

(a) Main dataset (b) Subject left out

Figure 8: Approximate Pareto-optimal fronts on the SPHERE dataset.
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5.1. PSO Based Search489

The PSO methods show the best overall energy-accuracy tradeo↵. The490

multi-objective shows slightly better results. However, its main benefit is that491

it obtains a higher number of solutions. The multi-objective PSO algorithm492

avoids crowding of particles, and as a result, it produces a Pareto-optimal493

front with higher granularity. The number of solutions it is consistently494

higher compared to the single objective PSO algorithm.495

5.2. Greedy Search496

The greedy search finds feature groups that are generally dominated by497

groups found by the PSO methods. Especially if saving energy is the main498

concern, the greedy search is not competitive. By its nature, the granularity499

of the results is low, since each iteration of the algorithm adds a new feature500

to the candidate set. However, the greedy search is faster to execute than501

the PSO methods.502

5.3. MI Based Selection503

This method performs significantly worse than the others. This is ex-504

plained as it is the only one that does not consider the energy cost in the505

selection process, and that it ignores the redundancy between di↵erent high-506

ranking features. Untypically, this method performs better on the test data507

than on validation data, for PAMAP2 and SPHERE datasets: unlike the508

other methods, this method does not fit the selected features to the valida-509

tion set.510

5.4. Dataset Specifics511

The PAMAP2 Dataset shows good match between the main dataset and512

the subject left out, and is the one that most benefits from the PSO methods.513

For the other datasets, the shape of the solution graph for the subject left514

out is slightly more di↵erent than the shape of the graph on the main portion515

of that dataset. The results on the SPHERE Challenge Dataset (Fig. 8) in516

particular are more a↵ected by randomness, as it has fewer samples: it is an517

order of magnitude smaller than the other two datasets (Table 6).518
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(a) Main dataset (b) Subject left out

Figure 9: Results from repeated PSO multi-objective optimizations on the HAR dataset.

5.5. Repeatability519

To investigate the repeatability of algorithms we select the best algorithm520

(PSO, multi-objective version) and run it on the HAR dataset 10 times.521

The results (Fig. 9) show that the initial selection of energy-e�cient feature522

groups shows perfect repeatability, while high accuracy can be obtained in523

multiple di↵erent ways, so di↵erent groups are selected in the di↵erent runs.524

The results on the subject left out set show increased variability compared525

to the validation set, as the optimization process operates with the latter.526

5.6. The Performance of Individual Features527

Figures 10 and 11 show the most frequently occurring individual features.528

These figures exclude the results from the MI based search, as they were529

generally much worse than the other methods and did not take into account530

the energy cost.531

The results show that there are no universally good features: no single532

feature shows up in all six di↵erent graphs. Each activity recognition ap-533

plication benefits from slightly di↵erent features. Furthermore, many of the534

features have high correlations with other features, therefore can be replaced535

with the other features at least for some of the applications. (It is worth536

noting that redundancy or very high correlation between features does not537

mean that they are always mutually replaceable [23].)538

Figure 12 visualizes the frequency and energy consumption of individual539

features in the results, on all datasets and all algorithms, except the MI540

based search. JerkMagSq-iqr is the only feature that shows up in five out541
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(a) PSO, multi-objective

(b) PSO, single objective

(c) Greedy selection

Figure 10: Ten most frequently occurring fea-
tures, plotted per algorithm.

(a) PAMAP2 dataset

(b) UCI HAR dataset

(c) SPHERE Challenge dataset

Figure 11: Ten most frequently occurring fea-
tures, plotted per dataset.
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Figure 12: The energy consumption and the selection frequency of individual features.
The diameter of the nodes is proportional to their frequencies in the results. The color of
a node corresponds to its individual energy consumption (darker color – more energy).

of the six plots. It is likely that the main reason for that is how cheap542

it is to transmit the results of this feature. However, it would be rather543

di�cult to manually come up with this feature, as it requires two intermediate544

transforms of the data (first jerk, then magnitude squared), succeeded by the545

calculation of both quartiles. We are not aware of any existing research that546

uses this particular feature. This demonstrates that our generalized approach547

of combining arbitrary transforms and calculating all candidate features on548

the result helps to discover novel, useful features.549

5.7. Algorithm Runtime Performance550

Table 7: Algorithm runtime performance on the SPHERE dataset.

Algorithm Runtime, seconds

Mutual Information 4.6 s
Greedy search 454.2 s

PSO, multi-objective 1924.5 s
PSO, single objective 2413.6 s

The algorithms are envisioned to run o✏ine, on a powerful computer. In551

Table 7 we provide results on an Lenovo Thinkpad X1 laptop with Intel Core552

i7-10710U CPU and 16GB RAM. It can be seen the the mutual information553
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based method is by far the fastest one, while the wrapper search methods554

incur a significant runtime as they have to train and evaluate RF classifiers555

on the dataset many times over. The application only uses a single core of556

the CPU; there is a potential for several-fold improvement if multithreading557

or GPU were used. The exact performance depends both on the dataset size558

and the classifier parameters, such as the number of trees in the RF classifier559

(see Section 4.3).560

6. Discussion561

6.1. Energy Saved By Using the Feature Extraction562

Table 8: F1 score comparison with and without feature selection.

PAMAP2 HAR SPHERE
Dataset Dataset Challenge Dataset

F1 score, best feature group 0.855 0.895 0.859
F1 score, all features 0.854 0.833 0.820

Best F1 score at 9.4µC 0.833 0.875 0.855

Table 9: Charge consumption comparison with and without feature selection.

PAMAP2 HAR SPHERE
Dataset Dataset Challenge Dataset

Raw data 94.38µC 94.38µC 94.38µC
At 99% of max F1 score 20.02µC 36.04µC 36.24µC
At 95% of max F1 score 8.39µC 25.49µC 36.08µC
At 90% of max F1 score 6.55µC 6.18µC 7.128µC

Wearable applications frequently collect the full acceleration data [39].563

Such an approach provides flexibility later on and is especially important if564

the initial hypothesis is not clear. However, simply adding more features565

may not improve the accuracy of the prediction (Table 8). When all features566

are used inputs to the RF classifier, the performance is worse in 5 cases out567

of 6 compared with selecting and sending over a group of features.568
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Figure 13: The envisioned application of the proposed system.

Moreover, the raw data transmission has much higher cost compared to569

extracting and transmitting features. On the target platform, collection raw570

data for a single window requires 31.46 ⇥ 3 = 94.38µC (Table 4). At 10%571

of that cost (i.e., at 9.4µC) the accuracy is similar to that obtained from572

using all features (Table 8). Hence, using the on-board feature extraction573

reduces the cost tenfold with only a small decrease in accuracy.574

6.2. Application Examples575

Fig. 13 shows the intended application of this work. The inputs of the576

proposed system are: labeled training data from a short-term pilot experi-577

ment, list of features, and the platform model. The amount of the training578

data required is not large: in our evaluation it ranges from 2.1 hours for579

SPHERE to >7 h for HAR (Table 6), although a more detailed activity pro-580

file may require more data. The amount of the data has an impact on the581

result quality (Figs. 6, 7, 8), but even for SPHERE it is acceptable.582

The output is the approximate Pareto front of feature groups; it should583

be used together with a battery model that captures the discharge patterns584

of the hardware platform’s power source (its voltage and capacity dynamics585

under load). Given both, it is possible to answer questions about the accuracy586

and longevity of the deployments before actually carrying them out, thus587

saving time and e↵ort.588

Example application 1. In a smart home project, wearable devices are589

to be deployed to participants together with recharging instructions. What590

is the minimum required recharge frequency, given that the system should591

achieve F1 score �0.9 ? Here, the question can be answered by collecting592

training data, running the feature group selection, and removing the results593

with F1 < 0.9. The most e�cient remaining feature set can be used, and the594

charge consumption can be translated to required recharge frequency using595
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a battery model.596

Example application 2. A clinical researcher plans to carry out a597

2-week trial with ill elderly people as the wearable users. What is the max-598

imum achievable F1 score, given that the participants should not be required599

to recharge the devices? Here, the charge consumption first must be trans-600

lated to battery life, and applied as a filter to the results; after that, the601

highest-scoring feature set provides the answer.602

7. Conclusions603

This paper proposes a framework for finding groups of features that have604

approximately optimal energy-accuracy trade-o↵s for activity recognition605

from acceleration data. The proposed system helps to answer questions about606

the expected battery lifetime and recognition accuracy of an activity recog-607

nition application without carrying a full-scale labor-intensive deployment.608

We describe a detailed energy consumption model that takes into account609

feature inter-dependencies and instantiate this model for an ARM Cortex-M3610

based wearable platform. Subsequently, we describe and evaluate a number611

of feature selection algorithms. Their evaluation using three datasets shows612

that the multi-objective Particle Swarm Optimization algorithm achieves the613

best results in terms of the accuracy-energy tradeo↵. Extracting and send-614

ing the features requires an order of magnitude less energy compared with615

sending the raw data, while having minimal impact on the F1 score.616
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